Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.
Основными источниками радиации являются:
- природные радиоактивные вещества вокруг и внутри нас — 73%;
- медицинские процедуры (рентгеноскопия и прочие) — 13%;
- космическое излучение — 14%.
Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.
Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов.
Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%.
В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.
mos-rep.ru
Энергетика — это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.
Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.
Содержание
- 0.1 В каких единицах измеряется радиация
- 0.2 Последствия облучения
- 0.3 Каковы максимально допустимые дозы облучения
- 0.4 Опасны ли рентгенологические исследования
- 0.5 Кому нельзя облучаться
- 0.6 Как защититься
- 1 Единицы измерения радиоактивного излучения
- 2 Единицы измерения и дозы радиации
- 3 Норма радиации — Единицы измерения, радиационный фон и нормы облучения
- 4 Единицы измерения радиации. Единицы измерения проникающей радиации
В каких единицах измеряется радиация
Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт — эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.
С прочими единицами измерения можно ознакомиться в таблице.
Термин | Единицы измерения | Соотношение единиц | Определение | |
В системе СИ | В старой системе | |||
Активность | Беккерель, Бк | Кюри, Ки | 1 Ки = 3,7 × 1010 Бк | Число радиоактивных распадов в единицу времени |
Мощность дозы | Зиверт в час, Зв/ч | Рентген в час, Р/ч | 1 мкР/ч = 0,01 мкЗв/ч | Уровень излучения в единицу времени |
Поглощённая доза | Грей, Гр | Радиан, рад | 1 рад = 0,01 Гр | Количество энергии ионизирующего излучения, переданное определённому объекту |
Эффективная доза | Зиверт, Зв | Рем | 1 рем = 0,01 Зв | Доза облучения, учитывающая различнуючувствительность органов к радиации |
»
Последствия облучения
Воздействие радиации на человека называют облучением. Основное его проявление — острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта — угрожает жизни облучённого.
Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.
Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.
Последствия облучения могут проявить себя через длительное время — это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний.
Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней.
И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.
Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.
Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего.
Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более.
Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей кишечника.
Каковы максимально допустимые дозы облучения
chornobyl.in.ua
Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую).
Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии — 161 мкЗв/ч.
После взрыва на Чернобыльской АЭС уровень радиации доходил до нескольких тысяч микрозивертов в час.
За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом — визиографом.
Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день — 2,7 мЗв. Одна флюорография — 0,6 мЗв, одна рентгенография — 1,3 мЗв, одна рентгеноскопия — 5 мЗв.
Излучение от бетонных стен — до 3 мЗв в год.
При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.
Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:
- 750 000 мкЗв — кратковременное незначительное изменение состава крови;
- 1 000 000 мкЗв — лёгкая степень лучевой болезни;
- 4 500 000 мкЗв — тяжёлая степень лучевой болезни (погибает 50% облучённых);
- около 7 000 000 мкЗв — смерть.
Опасны ли рентгенологические исследования
tari-spb.ru
Чаще всего с облучением мы сталкиваемся во время медицинских исследований. Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.
Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03, при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:
- 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
- 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
- 80 цифровых ортопантомограмм (13–17 мкЗв);
- 40 плёночных ортопантомограмм (25–30 мкЗв);
- 20 компьютерных томограмм (45–60 мкЗв).
То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.
Кому нельзя облучаться
Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.
Пункт 7.
18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».
Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.
Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент
Как защититься
Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.
Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и маммографию. Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.
Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.
Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, овсянка, необработанный рис, чернослив.
В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.
Продукты | Способы снижения радиоактивного загрязнения | Степень снижения загрязнения |
Картофель, томаты, огурцы | Промывка в проточной воде | В 5–7 раз |
Капуста | Удаление кроющих листьев | До 40 раз |
Свёкла, морковь, турнепс | Срезание венчика корнеплода | В 15–20 раз |
Картофель | Очистка мытого клубня | В 2 раза |
Ячмень, овёс (зерно) | Лущение, снятие плёнок | В 10–15 раз |
»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много.
Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей.
Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.
До или после воздействия радиации используют пищевые добавки и препараты против радиации.
Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе.
Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и ДНК показан диметилсульфид.
Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.
Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.
Источник: https://Lifehacker.ru/radiation/
Единицы измерения радиоактивного излучения
Многие сталкиваются с трудностями при определении единиц измерения радиоактивного излучения и практическом использовании полученных значений.
Сложности возникают не только из-за их большого разнообразия: беккерели, кюри, зиверты, рентгены, рады, кулоны, ремы и др.
, но и из-за того, что не все используемые величины связаны между собой кратными соотношениями и при необходимости могут переводиться из одних в другие.
Как разобраться?
Все довольно просто, если отдельно рассматривать единицы, связанные с радиоактивностью, как физическим явлением, и величины, измеряющие воздействие этого явления (ионизирующего излучения) на живые организмы и окружающую среду.
А также, если не забывать о внесистемных единицах и единицах радиоактивности, действующих в системе СИ (Международная система единиц), которая была введена в 1982 году и обязательна к использованию во всех учреждениях и предприятиях.
Внесистемная (старая) единица измерения радиоактивности
Кюри (Ки) – первая единица радиоактивности, измеряющая активность 1 грамма чистого радия. Введенная с 1910 года и названная в честь французских ученых К. и М.
Кюри, она не связана с какой-либо системой измерения и в последнее время утратила свое практическое значение.
В России же кюри, несмотря на действующую систему СИ, разрешенная к использованию в области ядерной физики и медицины без срока ограничения.
Единицы радиоактивности в системе СИ
В СИ используется другая величина – беккерель (Бк), которая определяет распад одного ядра в секунду.
Беккерель более удобен в расчетах, чем кюри, поскольку имеет не такие большие значения и позволяет без сложных математических действий по радиоактивности радионуклида определить его количество.
Высчитав количество распадов 1 г радона, легко установить соотношение между Ки и Бк: 1 Ки = 3,7*1010 Бк, а также определить активность любого другого радиоактивного элемента.
Измерение ионизирующих излучений
С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения.
Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества.
В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:
- Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
- Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
- Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).
В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:
- для альфа-частиц – 10-20;
- для гамма- и бета-излучения – 1;
- для протонов – 5-10;
- для нейтронов со скоростью до 10 кэВ – 3-5;
- для нейтронов со скоростью больше 10 кэВ: 10-20;
- для тяжелых ядер – 20.
Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы.
Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати.
При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.
Основные радиологические величины и единицы | |||
Величина | Внесистемные | Си | Соотношения между единицами |
Активность нуклида, А | Кюри (Ки, Ci) | Беккерель (Бк, Bq) | 1 Ки = 3.7·1010Бк 1 Бк = 1 расп/с1 Бк=2.7·10-11Ки |
Экспозицион- ная доза, X | Рентген (Р, R) | Кулон/кг (Кл/кг, C/kg) | 1 Р=2.58·10-4 Кл/кг 1 Кл/кг=3.88·103 Р |
Поглощенная доза, D | Рад (рад, rad) | Грей (Гр, Gy) | 1 Гр=1 Дж/кг |
Эквивалентная доза, Н | Бэр (бэр) | Зиверт (Зв, Sv) | 1 бэр=10-2 Зв 1 Зв=100 бэр |
Интегральная доза излучения | Рад-грамм (рад·г, rad·g) | Грей- кг (Гр·кг, Gy·kg) | 1 рад·г=10-5 Гр·кг 1 Гр·кг=105 рад·г |
Источник: https://www.quarta-rad.ru/useful/vse-o-radiacii/edinici-izmerenia-radiacii/
Единицы измерения и дозы радиации
Навигация по статье:
В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.
Допустимые дозы радиации
- допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем 0,57 мкЗв/час
- предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является 1 мЗв/год
В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час
Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.
В чем измеряется радиация
Для оценки физических свойств радиоактивных материалов применяются такие величины как:
- активность радиоактивного источника (Ки или Бк)
- плотность потока энергии (Вт/м2)
Для оценки влияния радиации на вещество (не живые ткани), применяются:
- поглощенная доза (Грей или Рад)
- экспозиционная доза (Кл/кг или Рентген)
Для оценки влияния радиации на живые ткани, применяются:
- эквивалентная доза (Зв или бэр)
- эффективная эквивалентная доза (Зв или бэр)
- мощность эквивалентной дозы (Зв/час)
Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется – поглощенной дозой.
Поглощенная доза – это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется – Грей (Гр).
1 Грей – это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.
1 Грей (Гр) = 1Дж/кг = 100 рад
Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.
Экспозиционная доза – это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется – Кулон/кг (Кл/кг).
1 Кл/кг= 3,88*103 Р
Используемая внесистемная единица экспозиционной дозы – Рентген (Р):
1 Р = 2,57976*10-4 Кл/кг
Доза в 1 Рентген – это образование 2,083*109 пар ионов на 1см3 воздуха
Оценка действия радиации на живые организмы
Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения.
Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными.
То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.
Эквивалентная доза – это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется – Зиверт (Зв).
Используемая внесистемная единица эквивалентной дозы – Бэр (бэр): 1 Зв = 100 бэр.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией < 10 КэВ (нейтронное излучение) | 5 |
Нейтроны от 10 до 100 КэВ (нейтронное излучение) | 10 |
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) | 20 |
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) | 10 |
Нейтроны > 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше “коэффициент k” тем опаснее действие определенного вида радиции для тканей живого организма.
Для более лучшего понимания, можно немного по-другому дать определение “эквивалентной дозы радиации”:
Эквивалентная доза радиации – это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).
Допустимые нормы радиации
В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.
Наиболее объективная характеристика это – эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час.
То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час.
Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах – мкЗв/час:
1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.
Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.
К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.
Источник: https://doza.pro/art/units
Норма радиации — Единицы измерения, радиационный фон и нормы облучения
Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.
Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?
Рассмотрим ниже.
Естественная радиация
Что имеют в виду под словами «естественный радиационный фон»?
Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.
Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.
Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.
Внимание:
- Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
- Допустимый фон – 16-60 мкР/час.
Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря (экспозиционная доза солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).
Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука доза облучения составит 50 мкЗв.
Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.
Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.
Виды радиационного фона
Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.
Виды фона:
- Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
- Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
- Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.
Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.
Как измеряют
Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.
Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.
Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.
Единицы измерения
Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.
Всего существует 5 главных единиц:
- Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
- БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
- Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
- Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
- Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.
Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.
В системе СИ прописаны Грей, Зиверт.
Существует ли вообще безопасная доза?
Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.
Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.
Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.
Кем устанавливаются нормы
Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.
Документы:
- НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
- ОСПОР-99.
Поглощенная доза
Она показывает, какое количество радионуклидов было поглощено организмом.
Допустимые дозы облучения согласно НРБ-99:
- За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
- За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.
Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.
Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.
Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.
Допустимая, безопасная радиация для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.
Нормы согласно СанПин
Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:
- Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
- В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
- Для продуктов норма радиации прописана детально, по каждому виду отдельно.
Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.
Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.
Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?
Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.
Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.
Бананы содержат калий-40. Однако, чтобы получить количество, которое будет опасно, необходимо употребить в пищу миллионы этих продуктов.
Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.
Смертельная доза
Какая доза будет смертельной?
В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.
Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.
Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.
Существуют такие цифры:
- Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
- Угроза для жизни – дозировка более 3000 мЗв.
- Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
- Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.
Однократное облучение приведет к:
- 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
- 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
- 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
- 10-80 Зв – кома, смерть через 5-30 мин.
- От 80 Зв – смерть мгновенно.
Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.
Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.
Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.
Источник: http://otravlenie103.ru/izluchenie/norma-radiatsii
Единицы измерения радиации. Единицы измерения проникающей радиации
С середины прошлого века в науку пришло новое слово – радиация.
Ее открытие совершило переворот в умах физиков всего мира и позволило отбросить некоторые ньютоновские теории и сделать смелые предположения относительно строения Вселенной, ее образования и нашего места в ней. Но это все – для специалистов.
Обыватели же только вздыхают и пытаются сложить воедино такие разрозненные знания об этом предмете. Усложняет процесс тот факт, что единиц измерения радиации существует довольно много, и все они правомочны.
Терминология
Первый термин, с которым стоит познакомиться, – это, собственно, радиация. Так называют процесс излучения каким-либо веществом мельчайших частиц, таких как электроны, протоны, нейтроны, атомы гелия и другие. В зависимости от вида частицы свойства излучения отличаются друг от друга. Излучение наблюдают либо при распаде веществ на более простые, либо при их синтезе.
Единицы измерения радиации – это условные понятия, которые указывают, сколько элементарных частиц высвобождается из вещества. На данный момент физика оперирует семью разными единицами и их комбинациями. Это позволяет описывать различные процессы, происходящие с материей.
Радиоактивный распад – произвольное изменение строения нестабильных ядер атомов при помощи высвобождения микрочастиц.
Постоянная распада – это статистическое понятие, предсказывающее вероятность разрушения атома на определенный отрезок времени.
Период полураспада – это временной промежуток, за который распадается половина всего количества вещества. У некоторых элементов он исчисляется минутами, а у других – годами, и даже десятилетиями.
Единицы измерения радиации – не единственные, которые используются для оценки свойств радиоактивных материалов. Кроме них применяют такие величины, как: – активность источника радиации;
– плотность потока (количество ионизирующих частиц на единицу площади).
Кроме этого, существует разница в описании воздействия радиации на живые и неживые объекты. Так, если вещество неживое, то к нему применимы понятия:
– поглощенная доза;
– экспозиционная доза.
Если же излучение подействовало на живую ткань, то используют следующие термины:
– эквивалентная доза; – эффективная эквивалентная доза;
– мощность дозы.
Единицами измерения радиации являются, как уже говорилось выше, условные числовые значения, принятые учеными для облегчения расчетов и построения гипотез и теорий. Возможно, именно поэтому не существует единой общепринятой единицы измерения.
Кюри
Одной из единиц измерения радиации является кюри. Она не относится к системным (не принадлежит к системе СИ). В России ее используют в ядерной физике и медицине. Активность вещества будет равняться одному кюри, если за одну секунду в нем будет происходить 3,7 миллиардов радиоактивных распадов. То есть можно сказать, что один кюри равен трем миллиардам семистам миллионам беккерелей.
Такое число получилось благодаря тому, что Мария Кюри (которая и ввела в науку данный термин) проводила свои опыты на радии и взяла за основу его скорость распада. Но со временем физики решили, что числовое значение этой единицы лучше привязать к другой – беккерелю. Это позволило избежать некоторых погрешностей в математических расчетах.
Помимо кюри, часто можно встретить кратные или дольные единицы, такие как: – мегакюри (равен 3,7 на 10 в 16 степени беккерелей); – килокюри (3,7 тысячи миллиардов беккерелей); – милликюри (37 миллионов беккерелей);
– микрокюри (37 тысяч беккерелей).
При помощи этой единицы можно выразить объемную, поверхностную или удельную активность вещества.
Беккерель
Единица измерения дозы радиации беккерель является системной и входит в Международную систему единиц (СИ). Она является самой простой, потому что активность радиации в один беккерель означает, что в веществе происходит всего один радиоактивный распад за секунду.
Она получила свое название в честь Антуана Анри Беккереля, французского физика. Название было одобрено в конце прошлого века и используется до сих пор. Так как это достаточно маленькая единица, то для обозначения активности используют десятичные приставки: кило-, милли-, микро- и другие.
В последнее время вместе с беккерелями стали использоваться такие внесистемные единицы, как кюри и резерфорд. Один резерфорд равняется миллиону беккерелей. В описании объемной или поверхностной активности можно встретить обозначения беккерель на килограмм, беккерель на метр (квадратный или кубический) и различные их производные.
Рентген
Единица измерения радиации рентген тоже не является системной, хоть и используется повсеместно для обозначения экспозиционной дозы полученного гамма-излучения. Один рентген равен такой дозе излучения, при которой один кубический сантиметр воздуха при стандартном атмосферном давлении и нулевой температуре несет в себе заряд, равный 3,3*(10*-10). Это равно двум миллионам пар ионов.
Несмотря на то, что по законодательству РФ большинство внесистемных единиц использовать запрещено, рентген используется в маркировке дозиметров. Но и они скоро перестанут использоваться, так как более практичным оказалось записывать и вычислять все в греях и зивертах.
Рад
Единица измерения радиации рад находится вне системы СИ и равняется такому количеству излучения, при котором одному грамму вещества передается одна миллионная джоуля энергии. То есть один рад – это 0,01 джоуль на килограмм материи.
Материалом, который поглощает энергию, может быть как живая ткань, так и другие органические и неорганические вещества и субстанции: почва, вода, воздух. Как самостоятельная единица рад был введен в 1953 году и в России имеет право использоваться в физике и медицине.
Грей
Это еще одна единица измерения уровня радиации, которая признана Международной системой единиц. Она отражает поглощенную дозу радиации. Считается, что вещество получило дозу в один грей, если энергия, которая передалась с излучением, равна одному джоулю на килограмм.
Эта единица получила свое название в честь английского ученого Льюиса Грея и была официально введена в науку в 1975 году.
По правилам, полное название единицы пишется с маленькой буквы, но ее сокращенное обозначение – с большой. Один грей равен ста радам.
Помимо простых единиц, в науке используют еще кратные и дольные их эквиваленты, такие как килогрей, мегагрей, децигрей, сантигрей, микрогрей и другие.
Зиверт
Единица измерения радиации зиверт используется для обозначения эффективной и эквивалентной доз излучения и также входит в систему СИ, как грей и беккерель. Используется в науке с 1978 года. Один зиверт равен энергии, которую поглотил килограмм ткани после воздействия одного грея гамма-лучей. Название свое единица получила в честь Рольфа Зиверта, ученого из Швеции.
Судя по определению, зиверты и греи равны, то есть эквивалентная и поглощенная дозы имеют одинаковые размеры. Но разница между ними все-таки есть.
При определении эквивалентной дозы необходимо учитывать не только количество, но и другие свойства излучения, такие как длина волны, амплитуда и какие частицы ее представляют.
Поэтому числовое значение поглощенной дозы умножают на коэффициент качества излучения.
Так, например, при всех прочих равных условиях поглощенный эффект альфа-частиц будет в двадцать раз сильнее, чем такая же доза гамма-излучения. Помимо этого, необходимо учитывать тканевой коэффициент, который показывает, как органы реагируют на излучение. Поэтому эквивалентная доза используется в радиобиологии, а эффективная – в гигиене труда (для нормирования воздействия излучения).
Солнечная постоянная
Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды – калории и ватты, деленные на единицу времени.
Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает.
До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.
Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий – от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, – это протоны, но иногда могут быть и электроны (если выброс энергии был большим).
Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.
Воздействие радиации на живых существ
Если одинаковые по своим характеристикам живые ткани облучать разными видами радиации (в одинаковой дозе и интенсивности), то результаты будут разниться.
Поэтому для определения последствий мало только поглощенной или экспозиционной дозы, как в случае с неживыми объектами.
На сцене появляются единицы измерения проникающей радиации, такие как зиверты бэры и греи, которые указывают на эквивалентную дозу радиации.
Эквивалентной называется доза, поглощенная живой тканью и умноженная на условный (табличный) коэффициент, который учитывает, насколько опасен тот или иной вид радиации. Чаще всего для ее измерения используется зиверт. Один зиверт равняется ста бэрам. Чем больше коэффициент тем, соответственно, опаснее излучение. Так, для фотонов это – единица, а для нейтронов и альфа-частиц – двадцать.
Со времени аварии на Чернобыльской АЭС в России и других странах СНГ стали особое внимание уделять уровню радиационного воздействия на человека. Эквивалентная доза от естественных источников излучения не должна быть выше пяти миллизивертов в год.
Действие радионуклидов на не живые объекты
Радиоактивные частицы несут в себе заряд энергии, который они передают веществу, когда сталкиваются с ним. И чем больше частиц соприкоснется на своем пути с определенным количеством вещества, тем больше оно получит энергии. Количество ее оценивается в дозах.
- Поглощенная доза – это то количество радиоактивного излучения, которое было получено единицей вещества. Измеряется в греях. Эта величина не учитывает тот факт, что воздействие разных видов излучения на материю отличается.
- Экспозиционная доза – представляет собой поглощенную дозу, но с учетом степени ионизации вещества от воздействия разных радиоактивных частиц. Измеряется в кулонах на килограмм или рентгенах.
Источник: https://FB.ru/article/326846/edinitsyi-izmereniya-radiatsii-edinitsyi-izmereniya-pronikayuschey-radiatsii